Difference between revisions of "Recombination Coefficients"

From AstroBaki
Jump to navigationJump to search
Line 2: Line 2:
  
 
===Reference Material===
 
===Reference Material===
* [http://www.astronomy.ohio-state.edu/~pogge/Ast871/Notes/Ionized.pdf (H II Regions, Ohio State)]
+
* [http://www.astronomy.ohio-state.edu/~pogge/Ast871/Notes/Ionized.pdf H II Regions (Ohio State)]
* [http://www.tapir.caltech.edu/~chirata/ay102/Photoionized.pdf (Photoionized Regions, Caltech)]
+
* [http://www.tapir.caltech.edu/~chirata/ay102/Photoionized.pdf Photoionized Regions (Caltech)]
  
 
===Need to Review?===
 
===Need to Review?===

Revision as of 12:12, 14 December 2017

Course Home

Reference Material

Need to Review?

<latex> \documentclass[11pt]{article} \def\inv#1Template:1 \over \def\ddtTemplate:D \over dt \def\mean#1{\left\langle #1\right\rangle} \def\sigot{\sigma_{12}} \def\sigto{\sigma_{21}} \def\eval#1{\big|_{#1}} \def\tr{\nabla} \def\dce{\vec\tr\times\vec E} \def\dcb{\vec\tr\times\vec B} \def\wz{\omega_0} \def\ef{\vec E} \def\ato{{A_{21}}} \def\bto{{B_{21}}} \def\bot{{B_{12}}} \def\bfieldTemplate:\vec B \def\apTemplate:A^\prime \def\xp{{x^{\prime}}} \def\yp{{y^{\prime}}} \def\zp{{z^{\prime}}} \def\tp{{t^{\prime}}} \def\upxTemplate:U x^\prime \def\upyTemplate:U y^\prime \def\e#1{\cdot10^{#1}} \def\qot{q_{12}} \def\qto{q_{21}} \def\ehvkt{e^{-h\nu_{21}\over2kT}} \def\hf{\frac12} \usepackage{fullpage} \usepackage{amsmath} \usepackage{eufrak} \begin{document}

\subsection*{THIS PAGE IS STILL UNDER CONSTRUCTION} \subsection*{ Bound-Free Transitions (Photoionization)}

\def\sigbf{\sigma_{bf}} We'll calculate the cross-section of a bound-free transition $\sigbf$: $$\sigbf\sim{\lambda^2\over 8\pi}{A_{21}\over \Delta\nu}$$ It turns out that $\Delta\nu$ is about $\nu$. $\lambda\approx 912\AA$, so scaling from Lyman-alpha: $$\sigbf\sim{(912\AA)^3\over c\cdot8\pi}A_{21,Ly\alpha} \left({1216\AA\over912\AA}\right)^3\sim 10^{-18}cm^2$$ It turns out that the real answer is $\sigbf\sim 6\cdot 10^{-18}cm^2$. In general: $$\sigbf=\sigma\eval{edge}\left({E_{photon\,in}\over E_{edge}}\right)^{-3}$$ That exponent (-3) is actually $-\frac83$ near the edge and goes to $-\frac72$ far from it. So you see $\sigbf$ spike up as the photon reaches the ionization energy, and then decrease exponentially as energy increases. However, you can see new spikes from ionizing electrons in inner shells.

\subsection*{ Radiative Recombination}

\def\sigfb{\sigma_{fb}} This is the inverse process of photoionization, so $\sigfb$ is the cross-section for an ion recapturing its electron and emitting a photon. We'll relate $\sigfb$ to $\sigbf$. This is called the Milne Relation. In this derivation, we'll start by assuming complete thermal equilibrium and derive a result which will end up being independent of thermal equilibrium. Let's start calculating the rate of radiative recombinations. Thermal equilibrium dictates that this must equal the rate of photoionization. For radiative recombination: $$rate\ of\ recombination =n_+n_e\sigfb(v)v[f(v)dv]={\#\ of\ recombinations\over volume\ time}$$ We'll set this equal to the rate of photoionization. This rate is: $$rate\ of\ photoionization ={B_\nu4\pi d\nu\over h\nu}n_0\sigbf \overbrace{\left(1-{g_0\over g_+}{n_+\over n_0}\right)}^{{correction\ for\atop stimulated}\atop recombination}$$ where $n_0$ is the \# density of neutrals. Note this has units of \# flux.