Difference between revisions of "Random Walks"

From AstroBaki
Jump to navigationJump to search
Line 73: Line 73:
 
A fun and useful example of random walks that anyone can try is with a few volunteers and perfume. Have the volunteers stand equally spaced in a line, then go to one end of the line and spray perfume in the air. Record the distances of the volunteers from the epicenter and time how long it takes for each one to smell the perfume. You will find that the time until the perfume is detected goes with the square of the distance, so that if someone at 1 meter takes 10 seconds to smell the perfume, someone at 3 meters will take 90 seconds.
 
A fun and useful example of random walks that anyone can try is with a few volunteers and perfume. Have the volunteers stand equally spaced in a line, then go to one end of the line and spray perfume in the air. Record the distances of the volunteers from the epicenter and time how long it takes for each one to smell the perfume. You will find that the time until the perfume is detected goes with the square of the distance, so that if someone at 1 meter takes 10 seconds to smell the perfume, someone at 3 meters will take 90 seconds.
  
This is because the particulates in the air carrying the perfume smell all start in the same place and get jostled in random directions by air molecules. Therefore, they all spread from their starting point through random walks, so the absolute distance they travel scales with the square root of number of steps they take (and therefore the time). In other, the distance squared is proportial to the time.
+
This is because the particulates in the air carrying the perfume smell all start in the same place and get jostled in random directions by air molecules. Therefore, they all spread from their starting point through random walks, so the absolute distance they travel scales with the square root of number of steps they take (and therefore the time). In other words, the distance squared is proportial to the time.
  
 
The exact same phenomenon can be seen with Plinko Boards, spilling salt on a table, the stock market, and numerous other examples.
 
The exact same phenomenon can be seen with Plinko Boards, spilling salt on a table, the stock market, and numerous other examples.

Revision as of 19:25, 11 December 2018

Course Home

Short Topical Videos

Reference Material

Need to Review?

Related Topics

<latex> \documentclass[11pt]{article} \def\inv#1Template:1 \over \def\ddtTemplate:D \over dt \def\mean#1{\left\langle #1\right\rangle} \def\sigot{\sigma_{12}} \def\sigto{\sigma_{21}} \def\eval#1{\big|_{#1}} \def\tr{\nabla} \def\dce{\vec\tr\times\vec E} \def\dcb{\vec\tr\times\vec B} \def\wz{\omega_0} \def\ef{\vec E} \def\ato{{A_{21}}} \def\bto{{B_{21}}} \def\bot{{B_{12}}} \def\bfieldTemplate:\vec B \def\apTemplate:A^\prime \def\xp{{x^{\prime}}} \def\yp{{y^{\prime}}} \def\zp{{z^{\prime}}} \def\tp{{t^{\prime}}} \def\upxTemplate:U x^\prime \def\upyTemplate:U y^\prime \def\e#1{\cdot10^{#1}} \def\eikrwt{e^{i(\vec k\vec r-wt)}} \def\qscat{Q_{scat}} \def\qabs{Q_{abs}}

\usepackage{fullpage} \usepackage{amsmath} \usepackage{eufrak} \begin{document} \def\lya{Ly\alpha}

\section{Random Walks}

If $\vec\phi=\phi_1,\phi_2,\dots$ is a random variable consisting of a series of random values, then a random walk $\vec w$ is a sum over this random variable: \begin{equation} w_i=\sum_{n=1}^{i}\phi_n \end{equation}

Random walks have the property that \begin{equation} |w_n|\propto\sqrt{n}, \end{equation} or more generally: \begin{equation} |w_n-w_m|\propto\sqrt{n-m} \end{equation}

\section{Examples}

A fun and useful example of random walks that anyone can try is with a few volunteers and perfume. Have the volunteers stand equally spaced in a line, then go to one end of the line and spray perfume in the air. Record the distances of the volunteers from the epicenter and time how long it takes for each one to smell the perfume. You will find that the time until the perfume is detected goes with the square of the distance, so that if someone at 1 meter takes 10 seconds to smell the perfume, someone at 3 meters will take 90 seconds.

This is because the particulates in the air carrying the perfume smell all start in the same place and get jostled in random directions by air molecules. Therefore, they all spread from their starting point through random walks, so the absolute distance they travel scales with the square root of number of steps they take (and therefore the time). In other words, the distance squared is proportial to the time.

The exact same phenomenon can be seen with Plinko Boards, spilling salt on a table, the stock market, and numerous other examples.

\end{document} <\latex>