Galaxies Lecture 26

From AstroBaki
Revision as of 01:46, 15 February 2010 by WikiSysop (talk | contribs) (Created page with '<latex> \documentstyle[11pt]{article} \def\hf{\frac12} \def\imply{\Rightarrow} \def\inv#1{{1\over #1}} \def\ddt{{d\over dt}} \def\ddz#1{{d#1\over dz}} \def\ddr#1{{d#1\over dr}} …')
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

The Galactic Center

We cannot observe the galactic center in optical because there are magnitudes of extinction. The first observations were made in radio by Carl Jansky. We can estimate the mass of the bulge in our galaxy by either doing velocity dispersion measurements or taking mass-to-light ratios using CO emission from red giants, or by doing dust measurements and using dust-to-gas-to-star ratios. The mass of the disk of our galaxy is about , and the mass of the bulge is about . Since the bulge is about 1 kpc in radius, we can estimate that the density of the bulge is about per (compared to for the disk). We can figure the gravitation potential in the bulge:

The second equation is the equation for hydrostatic equilibrium, and we are going to make the assumption that , because the gas will always be confined to the plane of the disk. We then find:

If we assume is constant then we have:

where is the scale height of gas in the bulge. We can also get the pressure as:

This tells us that the pressure in the galactic center is about times more than in the solar neighborhood.

Looking at velocity vs. longitude in the galactic center, we see a lot of gas at forbidden velocities (receding when it should be approaching and visa versa from circular orbits). If we have a bar in the center of our galaxy, then we have stars in noncircular orbits because of epicyclic motion. Gas cannot have epicyclic motion because it is collisional. Instead, gas has elogated orbits resulting from the disturbed potential of the stars going around in the bar. Inside of the inner Lindblad resonance (about 20 pc from the center in the MW), gas can still have circular orbits, as it can outside the outer Lindblad resonance. These regions are called X2 and X1 orbits, respectively.