Short Topical Videos
Reference Material
Einstein Coefficients
Einstein coefficients describe the absorption and emission of photons via electronic transitions in atoms. Suppose we have an atom with 2 energy levels with an energy difference of
. Einstein coefficients describe the transition rates caused by the interaction of radiation with these discrete energy levels. There are three coefficients:
Left: Photon absorption rates are described by
. Center: Spontaneous photon emission rates are described by
. Right: Stimulated photon emission rates are described by
.
1 Spontaneous Emission, 
governs decay from energy state 2 to 1. It is the transition probability per unit time for an atom, and has units of
. More specifically, the probability an atom undergoes spontaneous de-excitation and releases a photon is Poisson-distributed, with mean rate
. So
is the mean lifetime of the excited state. As an example,
(
transition in hydrogen) has an Einstein A coefficient of
.
If
describes the number density of atoms in the upper energy state, then the transition rate per volume is given by:
2 Spontaneous Absorption, 
governs photon absorption that causes a transition from the lower to upper energy state (
). In contrast to the
case, absorption requires the presence of photons, so translating
to an excitation rate requires some knowledge of the background radiation field.
To describe the background radiation field, we define the spherically averaged specific intensity:
We use
instead of
(the intensity) because atomic absorption does not depend on direction. However, we have to remember that there are uncertainties in the energy-level separations, which means that atoms absorb photons that are not perfectly tuned to the energy difference between electronic states. To incorporate this, we use the line profile function,
. It describes the relative absorption probability around
(the absorption frequency), and is subject to the requirement that:
. We can approximate the width of
as an effective width
.
is affected by many factors:
(the natural, uncertainty-based broadening of at atom in isolation),
(Dopper broadening from thermal motion), and
(collisional broadening, a.k.a. pressure broadening).
Line profile functions are of special interest for studying line emission/absorption, and we have more discussion in a separate section on line profile functions.
Using the line profile function, we get the transition probability per unit time associated with spontaneous absorption:
3 Stimulated Emission, 
governs stimulated emission. In this example, we are in energy state 2, and an incoming photon causes a transition to energy level 1 and the emission of 2 photons. The transition per unit time is
.
1 Einstein Relations among coefficients
Assume we have many atoms with 2 energy states, and
is the # density in state 1, ditto for
. Assume we are in thermal, steady-state equilibrium, so:
This is because as many atoms need to be going from energy state 1 to 2 as visa versa. A second relation is:
. Using that
:
In thermal equilibrium
:
Combining this with
earlier, we get:
and
2 Rewriting
in terms of Einstein coeffs
In a small volume
:
We can express
in terms of the Einstein coefficients. The excitation probability per time is
, and the energy lost in crossing the small volume
(it is the probability per time per volume of going
by absorbing
from a cone of solid angle
and frequency range
). Thus, the energy is given by:
Recognizing that
:
Correcting for stimulated emission, we get:
3 Estimating Cross-Sections
The absorption coefficient, written in terms of Einstein constants is:
Thus, the cross-section of an atom for absorption of a photon is:
To estimate
, we use the fact that, ignoring g’s,
, and
. Then using the approximation that that
, we get:
In a single atom,
, so
.