Difference between revisions of "Cosmological Principle"

From AstroBaki
Jump to navigationJump to search
 
Line 2: Line 2:
 
* [https://www.youtube.com/watch?v=w--9SOeuuSU From the Big Bang to First Light --- the History of Our Universe (Aaron Parsons, UC Berkeley)]
 
* [https://www.youtube.com/watch?v=w--9SOeuuSU From the Big Bang to First Light --- the History of Our Universe (Aaron Parsons, UC Berkeley)]
 
* [https://www.youtube.com/watch?v=NjSFR40SY58 The Illustris Simulation: Most detailed simulation of our Universe (Mark Vogelsberger, MIT)]
 
* [https://www.youtube.com/watch?v=NjSFR40SY58 The Illustris Simulation: Most detailed simulation of our Universe (Mark Vogelsberger, MIT)]
 +
* [https://www.youtube.com/watch?v=vvKh19-37-I Cosmology, Homogeneous, Isotropic, Cosmological Principle, Curvature (Clements)]
  
 
===Reference Material===
 
===Reference Material===

Latest revision as of 10:59, 12 January 2017

Short Topical Videos[edit]

Reference Material[edit]

<latex> \documentstyle[11pt]{article}

\def\:{\ddot } \def\.{\dot } \def\^{\hat } \def\_{\bar } \def\~{\tilde } \def\hf{\frac12} \def\imply{\Rightarrow} \def\inv#1Template:1\over \def\ddtTemplate:D\over dt \def\aaTemplate:\dot a \over a \def\addaTemplate:\ddot a \over a \def\thnot{\theta_0} \def\etot{\Omega_0} \def\econs{\Omega_{0,\Lambda}} \def\emat{\Omega_{0,M}} \def\econs{\Omega_{0,\Lambda}} \def\p{^\prime} \def\iff{\Leftrightarrow} \def\xvTemplate:\vec x \def\pvTemplate:\vec p \def\vvTemplate:\vec v \def\pptTemplate:\partial\over\partial t \def\ddt{\frac{d}{dt}} \def\epotTemplate:8\pi \over 3

\usepackage{fullpage} \usepackage{amsmath} \usepackage{eufrak} \usepackage{graphicx}

\begin{document} \section*{ The Cosmological Principle}

\begin{figure} \centering \includegraphics[width=6.5in]{universe.png} \caption{A cartoon map of the scales of structures in our universe.} \end{figure}

The {\bf Cosmological Principle} states that the universe is spatially {\it isotropic} (looks the same in all directions) and {\it homogeneous} (has constant density everywhere) on large scales. The {\bf Perfect Cosmological Principle} states that the universe is also {\it temporally} isotropic and homogeneous (a steady state universe). This is unlikely because it doesn't describe the Cosmic Microwave Background (CMB). The CMB and Hubble's Law are both provide evidence for isotropy and homogeneity.


\end{document} <\latex>