Difference between revisions of "Cosmological Principle"
Line 9: | Line 9: | ||
<latex> | <latex> | ||
− | \ | + | \documentstyle[11pt]{article} |
− | \ | + | |
+ | \def\:{\ddot } | ||
+ | \def\.{\dot } | ||
+ | \def\^{\hat } | ||
+ | \def\_{\bar } | ||
+ | \def\~{\tilde } | ||
+ | \def\hf{\frac12} | ||
+ | \def\imply{\Rightarrow} | ||
+ | \def\inv#1{{1\over #1}} | ||
+ | \def\ddt{{d\over dt}} | ||
+ | \def\aa{{\dot a \over a}} | ||
+ | \def\adda{{\ddot a \over a}} | ||
+ | \def\thnot{\theta_0} | ||
+ | \def\etot{\Omega_0} | ||
+ | \def\econs{\Omega_{0,\Lambda}} | ||
+ | \def\emat{\Omega_{0,M}} | ||
+ | \def\econs{\Omega_{0,\Lambda}} | ||
+ | \def\p{^\prime} | ||
+ | \def\iff{\Leftrightarrow} | ||
+ | \def\xv{{\vec x}} | ||
+ | \def\pv{{\vec p}} | ||
+ | \def\vv{{\vec v}} | ||
+ | \def\ppt{{\partial\over\partial t}} | ||
+ | \def\ddt{\frac{d}{dt}} | ||
+ | \def\epot{{8\pi \over 3}} | ||
+ | |||
+ | \usepackage{fullpage} | ||
\usepackage{amsmath} | \usepackage{amsmath} | ||
+ | \usepackage{eufrak} | ||
\usepackage{graphicx} | \usepackage{graphicx} | ||
− | |||
− | |||
\begin{document} | \begin{document} | ||
− | \section{The Cosmological Principle} | + | \section*{ The Cosmological Principle} |
\begin{figure} | \begin{figure} | ||
+ | \centering | ||
\includegraphics[width=6.5in]{universe.png} | \includegraphics[width=6.5in]{universe.png} | ||
\caption{A cartoon map of the scales of structures in our universe.} | \caption{A cartoon map of the scales of structures in our universe.} | ||
\end{figure} | \end{figure} | ||
+ | |||
+ | The {\bf Cosmological Principle} states that the universe is spatially | ||
+ | {\it isotropic} (looks the same in all directions) | ||
+ | and {\it homogeneous} (has constant density everywhere) on large scales. | ||
+ | The {\bf Perfect Cosmological Principle} states that the universe is | ||
+ | also {\it temporally} isotropic and homogeneous (a steady state universe). | ||
+ | This is unlikely because it doesn't describe the Cosmic Microwave Background | ||
+ | (CMB). The CMB and Hubble's Law are both provide evidence for isotropy and | ||
+ | homogeneity. | ||
+ | |||
\end{document} | \end{document} | ||
<\latex> | <\latex> |
Revision as of 00:03, 18 January 2016
Short Topical Videos
- From the Big Bang to First Light --- the History of Our Universe (Aaron Parsons, UC Berkeley)
- The Illustris Simulation: Most detailed simulation of our Universe (Mark Vogelsberger, MIT)
Reference Material
- The Cosmological Principle (Wikipedia)
- The Observable Universe (Wikipedia)
- The Cosmological Principle (James Schombert, U. Oregon)
<latex> \documentstyle[11pt]{article}
\def\:{\ddot } \def\.{\dot } \def\^{\hat } \def\_{\bar } \def\~{\tilde } \def\hf{\frac12} \def\imply{\Rightarrow} \def\inv#1Template:1\over \def\ddtTemplate:D\over dt \def\aaTemplate:\dot a \over a \def\addaTemplate:\ddot a \over a \def\thnot{\theta_0} \def\etot{\Omega_0} \def\econs{\Omega_{0,\Lambda}} \def\emat{\Omega_{0,M}} \def\econs{\Omega_{0,\Lambda}} \def\p{^\prime} \def\iff{\Leftrightarrow} \def\xvTemplate:\vec x \def\pvTemplate:\vec p \def\vvTemplate:\vec v \def\pptTemplate:\partial\over\partial t \def\ddt{\frac{d}{dt}} \def\epotTemplate:8\pi \over 3
\usepackage{fullpage} \usepackage{amsmath} \usepackage{eufrak} \usepackage{graphicx}
\begin{document} \section*{ The Cosmological Principle}
\begin{figure} \centering \includegraphics[width=6.5in]{universe.png} \caption{A cartoon map of the scales of structures in our universe.} \end{figure}
The {\bf Cosmological Principle} states that the universe is spatially {\it isotropic} (looks the same in all directions) and {\it homogeneous} (has constant density everywhere) on large scales. The {\bf Perfect Cosmological Principle} states that the universe is also {\it temporally} isotropic and homogeneous (a steady state universe). This is unlikely because it doesn't describe the Cosmic Microwave Background (CMB). The CMB and Hubble's Law are both provide evidence for isotropy and homogeneity.
\end{document}
<\latex>