Boltzmann distribution

From AstroBaki
Jump to navigationJump to search

Course Home

Short Topical Videos[edit]

Reference Material[edit]

Need to Review?[edit]

Related Topics[edit]

Boltzmann Distribution

1 Definition

The Boltzmann distribution gives the relative fraction of atoms in two states in thermal equilibrium at a certain temperature, taking into account the degeneracies of these states and the energy difference between states. This distribution applies to large ensembles of atoms such that statistical arguments are valid. The formula for the Boltzmann distribution is given by the following:

where are the number (or number density) of atoms in energy states 1 and 2, respectively, are the respective degeneracies of those energy states (i.e., how many distinct configurations of the atom have that same energy state), is the energy difference between the two states, is Boltzmann’s constant, and is the temperature describing the distribution of states in the system.

Note the distinction between the Boltzmann distribution, which describes the distribution of energy states in the system at a given temperature, and the Maxwell-Boltzmann distribution, which instead describes a distribution of velocities at a given temperature.

The Boltzmann distribution tells us which transitions to expect from a population, since, for a transition to occur, we must begin with particles in the starting state such that they may transition to the end state. Together with the Saha Equation, it can also tell us the ratio of element abundances in stellar astrophysics, allowing for the interpretation of stellar spectra.

2 Derivation

Consider an isolated statistical ensemble of N particles with energies given by

and total number of particles

The N particles are arranged into microstates given by

Here, W is the probability of a given distribution. To find the distribution of particles in our system, we will need to find the most probable microstate, or the distribution that maximizes W. To accomplish this, we will equivalently find a maximum in lnW.

Solving for lnW from our previous expression, we get

where we implemented Stirling’s approximation for large N, , to simplify our expression. Using Lagrange’s method of undetermined multipliers, we seek a maximum in

where and are constant values. A maximum in this expression is equivalent to a maximum in lnW or in W because the second and third terms consist of only constant values, where we have defined our total energy and our total number of particles to be constant (recall that we are considering an isolated ensemble). Thus, we solve for the maximum value of this expression with respect to to find the most probable microstate.

Recalling our equation for lnW from earlier,

Plugging this in to our maximum probability expression, we then get

Finally, taking a ratio between two energy states, we get

which is a generalized form of the Boltzmann equation. Here, . The term in our derivation, though it dropped out of our Boltzmann distribution, is given by , where is the chemical potential.

3 Degeneracies of the hydrogen atom

The energy degeneracies corresponding to each E_n for the hydrogen atom are given by:

Taking the two electron spin states and the two proton spin states of hydrogen into account, our degeneracies then ultimately become

Using this expression for our degeneracies, we can then show the ratios of excited states of hydrogen to the ground state as a function of temperature:

Ratios of hydrogen excited states to the ground state as a function of temperature